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1. Introduction

IceCube is a cubic-kilometer sized neutrino telescope embedded in the Antarctic ice and
optimized for detection of high-energy neutrinos above ∼ 100 GeV. It consists of 86 in-ice strings
equippedwith 5,160 optical sensors designed to collect Cherenkov light at a depth of 1450m to 2450
m. In the past years IceCube has carried out a successful campaign in the search for high-energy
astrophysical neutrinos, with the discovery of a diffuse flux [1] and hints of astrophysical sources
[2, 3]. Previous results from the IceCube collaboration [2, 4] indicate the potential for temporally
clustered neutrino emission. While [2] makes use of a method that only fits the largest neutrino flare
at a particular candidate location, extensions of this method to include information from multiple
flare fits can improve the sensitivity of a temporal clustering analysis to smaller flares, provided that
source candidates flare multiple times [5]. The need for a multiple flare fit is also motivated by the
increasing duration of the IceCube data available for analysis. By applying these methods to every
point in the sky, we can search for an excess of spatial and temporal clustering in the data.

In these proceedings, we show the results of applying two variants of a "multi-flare" analysis
framework to neutrino data spanning the entire sky. The first variant (a "high-statistics" approach)
makes use of all possible flare fits, including those with low local significance, while the second
variant (a "high-purity" approach) imposes tighter cuts to select for only the most promising flare
candidates. The dataset used for these analyses comprises 10 years of IceCube data [6] (from
April 6, 2008 to July 10, 2018) and includes periods of detector configurations with 40, 59, 79
(partially-built configurations) and 86 strings, and different event selection optimized for high-
energy track-like events. A total of 5 independent samples are analyzed. The background events
mostly consist of up-going muons from interactions of atmospheric neutrinos from the northern
hemisphere and high-energy down-going atmospheric muons from the southern hemisphere.

2. Analysis methods

The two multi-flare analyses are based on an unbinned maximum-likelihood method used to
test a grid of pixels across the entire sky with typical resolution of 0.1◦ × 0.1◦. Due to the different
composition of background events mentioned in the previous section, the sky is further divided
into the northern hemisphere (declination X ≥ −5◦) and southern hemisphere (X < −5◦), which are
treated independently. The assumed time profile of the flares is box-shaped in the high-statistics
approach, Gaussian-shaped in the high-purity approach. However, it must be noticed that these
two different choices do not constitute a relevant difference for the analyses (see also [2]). In the
following, the term "time window" Δ) of the flare will be used to denote the full duration of the
box-shaped flare and twice the standard deviation of the Gaussian flare.

The high-statistics approach has the advantage to collect information of all possible flares from
the searched direction. On the one hand, this feature makes the analysis especially sensitive to the
search for source candidates that show several emissions of low-intensity flares; on the other hand,
the sensitivity of this search is degraded in the case of source candidates flaring only few times. The
high-purity approach aims to improve the sensitivity in the case of few flares while still being able
to detect multiple flares. This is achieved by requiring a tighter quality selection on the candidate
flares. As a drawback, the sensitivity to the cases with several flares is worse than the high-statistics
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approach. Fig. 1 shows, as an example, the comparison of the sensitivity of the two approaches as a
function of the number of signal flares at the location of NGC 1068, assuming a flare time window
Δ) = 20 days and an energy distribution of the signal events 3#/3� ∼ (�/TeV)−2.

Figure 1: Comparison of the sensitivity of the high-statistics (HS, in orange) and high-purity (HP, in blue)
analyses at the location of NGC 1068 as a function of the number of signal flares. In the multi-flare scenario
all the flares are injected with the same intensity, assuming the same flare time window Δ) = 20 days and
the same energy spectrum 3#/3� ∼ (�/TeV)−W , with W = 2.

The two approaches are used to look for the hottest pixel in each hemisphere. Background
maps of the sky are produced by scrambling the data in right ascension and maximizing a test
statistic at the coordinates of all the pixels in the sky. These background maps are used to construct
background test statistic distributions in any given declination band. A pre-trial p-value is computed
at the coordinates of each pixel by comparing the observed test statistic with a distribution of test
statistics obtained in the corresponding declination band under the background hypothesis. The
most significant pixel (with the smallest p-value) is then compared to the distribution of most
significant pixels seen in background maps, resulting in a final, "post-trial" p-value. This process is
conducted separately in the northern and southern skies, producing one "post-trial" hot spot p-value
for each hemisphere.

The search for the hottest spot has the advantage of looking at the sky in an unbiased fashion,
but the final post-trial p-value is affected by a large trial factor as a consequence of the huge number
of tested pixels. For this reason, an all-sky population test is also performed that looks for a possible
excess of sub-threshold hot spots in the two hemispheres separately. Hot spots are defined as spatial
clusterings of pixels with small p-value that are at least 1 degree apart one another. The population
test uses binomial statistics in the high-statistics approach and Poissonian statistics in the high-purity
approach.
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2.1 High-Statistics Analysis

For this approach we apply the method described in [5] to a grid of pixels defined over the
entire sky (restricted to −85◦ < X < 85◦). An ensemble of box-shaped flares is fit at the location
of each pixel, each with a corresponding set of fitted parameters =B, W, CBC0AC , CBC>? (corresponding
to the fitted number of signal events, the spectral index, and the time at which the flare begins
and ends, respectively). Once these flare fits have been obtained, a multi-flare test statistic can be
calculated by simply summing the component flare test statistics at each pixel.

As mentioned previously, a population analysis is also performed by way of a binomial test on
the ensemble of spatial hot spots. Here the binomial test statistic p-value of the population test is
defined as:

?(:) =
#4 5 5∑
8=:

(
#4 5 5

8

)
?8: (1 − ?:)

#4 5 5 −8 (1)

Here, ?(:) is correlated with the significance of observing : hot spots with a p-value of ?:
or less, and #4 5 5 is the effective number of trials associated with the list of hot spots, chosen to
produce proper containment of the final binomial p-values (e.g. a final binomial p-value of ? = 0.1
or less should only occur in 10% of background trials). In this case, #4 5 5 = #?8G4;B produces
proper containment. Hot spots are ordered by decreasing significance, and : is varied to identify
the most significant combination. The ?(:) associated with the best fit : is then compared to a
distribution of ?(:)’s obtained in a similar manner from data scrambled in right ascension, resulting
in a final post-trial binomial p-value. Like with the study of the most significant pixel, this process
is conducted separately in the northern and southern skies.

2.2 High-Purity Analysis

The high-purity approach is used to test the declination range −80◦ < X < 80◦ in search
for flares with Gaussian time profile. Each flare 9 is characterized by the number of signal-like
neutrinos =B, 9 , the spectral index W 9 , the central time C0, 9 and the flare duration f) , 9 . The likelihood
of each IceCube sample : reads as follows:

! (:) (®=B, ®W, ®C0, ®f) ) =
#
(:)
4EC∏
8=1


∑
9=flares =

(:)
B, 9
(
(:)
8 9
(W 9 , C0, 9 , f) , 9)

#
(:)
4EC

+ ©­«1 −
∑
9 =
(:)
B, 9

#
(:)
4EC

ª®¬ � (:)8 (sin X8 , �8)

(2)

where ( (:)
8 9
(W 9 , C0, 9 , f) , 9) and � (:)8 (sin X8 , �8) are the single-flare signal probability density function

(PDF) and the background PDF respectively (see also [7]), and # (:)4EC and =
(:)
B, 9

are respectively the
total number of events in the sample : and the number of signal-like events of the 9-th flare in
the sample : , such that =B, 9 =

∑
: =
(:)
B, 9

. The full 10-year likelihood is defined as the product of
the likelihoods of each IceCube sample, ! =

∏
: !: . The background likelihood is defined as the

likelihood in Eq. 2 with ®=B = ®0 to reproduce the null hypothesis (no astrophysical neutrinos).
A test statistic (TS) is defined through the likelihood ratio:

TS = −2 log

1
2

©­«
∏
9=flares

);8E4

f̂) , 9 �
[
Ĉ0, 9 , f̂) , 9

] ª®¬ × ! (®=B = ®0)
! ( ®̂=B, ®̂W, ®̂C0, ®̂f) )

 (3)
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where the parameters that maximize the signal likelihood are denoted with hats and );8E4 is the
full livetime of the analysis (nearly 10 years). The factor in parentheses is the multi-flare exten-
sion of the marginalization term described in [8], with the additional factor 0 < �

[
Ĉ0, 9 , f̂) , 9

]
=∫

);8E4

1√
2cf) , 9

exp
[
− (C−C0, 9 )

2

2f2
) , 9

]
3C < 1 introduced to correct for boundary effects when flares are fitted

close to the time limits of the analysis. An estimated number of flares is required as a seed before
the fit is performed. For each clustering, we consider only non-overlapping flares containing highly
signal-like events with TS > 2, which reduces the frequency of multiple flare reconstruction below
0.1% under the null hypothesis.

The population test, also described in [9], assumes that the number of local hot spots follows
Poissonian statistics. To quantify the significance of the cumulative excess of local hot spots with
p-value ?E0; smaller than a given threshold ?CℎA , we define the following local Poissonian p-value:

%%>8BB (?CℎA ) =
∞∑

<=: (?CℎA )
4−_(?CℎA )

_(?CℎA )<
<!

(4)

where _(?CℎA ) and : (?CℎA ) are respectively the expected and observed number of local hot spots
with ?E0; ≤ ?CℎA . Different values of ?CℎA are scanned in the range 10−6 − 10−2 and the lowest
local Poissonian p-value is considered as pre-trial for the population test. A distribution of such
local Poissonian p-values is built from background sky maps and used to construct a trial-corrected
post-trial Poissonian p-value for this analysis. _(?CℎA ) is estimated on a subset of background sky
maps which are independent of those used to construct the post-trial Poissonian p-value.

3. Results

The results of the multiflare analyses with 10 years of IceCube data are summarized in Table 1.

Analysis Search Hemisphere Pre-trial p-value Post-trial p-value

High-stat multi-flare
Hottest spot

North 9.2 × 10−6 0.69
South 3.5 × 10−7 0.06

Population test
North 0.98 0.98
South 0.12 0.12

High-purity multi-flare
Hottest spot

North 2.9 × 10−5 0.98
South 1.1 × 10−5 0.90

Population test
North 0.13 0.85
South 6.0 × 10−3 0.22

Table 1: Summary table with the results of the high-statistics and high-purity analyses. Here, "post-trial"
refers only to accounting for the trial factor associated with scanning over the full sky in a particular analysis,
and does not account for combining the p-values across the various different analyses performed here.

The most significant locations identified by the high-statistics analysis have pre-trial p-values
of ? = 9.2 × 10−6, located at (RA, Dec)=(145.02◦, 36.42◦) and ? = 3.5 × 10−7, located at (RA,
Dec)=(126.21◦,−24.81◦). Correcting for the all-sky trial factor results in post-trial p-values of
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? = 0.69 for the northern sky hot spot and ? = 0.06 for the southern sky hot spot. The binomial
test on the population of spatially independent hot spots obtains a best fit value of : = 1 in both the
northern and southern sky, resulting in a post-trial p-value of ? = 0.76 in the north, and ? = 0.12
in the south. Distributions of the local high-statistics multi-flare p-values calculated for each pixel
can be seen in Fig. 2.

Figure 2: The distribution of local pixel multi-flare p-values in the high-statistics analysis. The observed
data is shown in red, while the background expectation obtained from maps scrambled in right ascension is
shown in blue.

Figure 3: Population test in the high-purity analysis, showing the number of local hot spots (#�() with
p-value ?E0; smaller than a threshold ?CℎA as a function of − log10 (?CℎA ) in the northern (left) and southern
(right) hemisphere. Background expectations are shown as a blue dashed line, with 68% and 95% contain-
ment, the unblinded data are shown as a red solid line and the largest excess is shown as a green dash-dotted
line. The bottom panels show the local Poissonian p-value %%>8BB (?CℎA ) for the corresponding − log10 (?CℎA ).

Since the application of the high-statistics multi-flare analysis involves fitting every possible
flare in the data, it is trivial to additionally calculate the significance of the largest individual flare
candidate that was fit in both the northern and southern sky. We find that the most significant flare
candidate in the northern sky is located at (RA, Dec)=(21.97◦,−0.60◦) (recall that the "northern
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sky" refers to declinations between −5◦ and 85◦), and has a pre-trial significance of ? = 5.08×10−6

(? = 0.82 post-trial). The most significant flare candidate in the southern sky is located at (RA,
Dec)=(311.66◦,−18.84◦), and has a pre-trial significance of ? = 6.8 × 10−6 (? = 0.53 post-trial).

An advantage of performing an all-sky multi-flare analysis is the production of neutrino "flare
curves" at every location in the sky. Each flare curve contains a list of fitted flares. We additionally
calculate local p-value corresponding to each of these flares by comparing their individual flare
test statistics to a background distribution of flares fitted at that declination in maps with data
scrambled in right ascension. The local flare p-value can be interpreted as an indication of flare
candidate strength: flare candidates with high significance correspond to a high degree of clustering
of neutrino events in space and time. The flare curves corresponding to the most significant multi-
flare locations in the northern and southern sky for both the high-stats and high purity analysis are
shown in Fig. 4.

Figure 4: The neutrino flare curves fitted at the most significant pixels in both the high-statistics (top) and
high-purity (bottom) analyses. The top panel in each plot shows the event weights (the ratio of the spatial
and energy PDFs) of nearby events, while the bottom panel shows the ensemble of neutrino flare candidates
that were fit by the high-statistics (blue) and high-purity (orange) analyses. The y-axis corresponds to the
pre-trial local p-value associated with each individual flare.

The high-purity analysis identifies themost significant spot in the northern sky at the coordinates
(RA, Dec)=(309.64◦, −0.75◦), with pre-trial p-value of 2.9 × 10−5 and post-trial p-value ? = 0.98.
The most significant spot in the southern sky is found at the coordinates (RA, Dec)=(89.21◦,
−35.87◦), with pre-trial p-value of 1.1× 10−5 and post-trial p-value ? = 0.90. The population tests
performed in the northern and southern hemispheres result in a local Poissonian p-value of 0.13
and 6.0 × 10−3 respectively, that become 0.85 and 0.22 after correcting for trials. Fig. 3 shows the
outcome of the population test in the two hemispheres, together with the local Poissonian p-value
%%>8BB (?CℎA ). The population test in the high-purity analysis is used to constrain a hypothetical
population of sources in the nothern sky which would produce the observed flux. Signal maps with
an isotropic distribution of single-flaring transient sources are generated in the northern sky with
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Figure 5: Sensitivity (dashed lines) and upper limits (solid lines) of the population test with the high-purity
analysis in the northern hemisphere for transients of 1 day (red) and 100 days (green), in terms of the emitted
energy of the sources E and the source density per unit time ¤d. The best-fit astrophysical flux is also shown
as a blue dashed line with its 1 f and 2 f uncertainty. The sources are assumed to flare only once with
spectral index W 9 = 2.28. The declination and intensity of the sources are simulated with FIRESONG [10].

FIRESONG [10]. All sources vary in luminosity and density and have an identical energy spectrum
3#/3� ∝ �−2.28, matching the best-fit spectral index of the 10-year IceCube astrophysical diffuse
flux [11]. The constraints on the source population are shown in Fig. 5.
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